Automatic and DDC Control Fundamentals and Energy Conservation for HVAC Equipment-Part 1

Disclaimer

This presentation was prepared specifically for use as college training material. It shall not be modified without the consent of the authors.

This presentation represents sponsored research activities. Neither the Client nor Battelle warrants the accuracy, completeness or usefulness of the information. Reference herein to any specific commercial product, process or service by trade names or manufacturer does not constitute an endorsement or recommendation.

DDC Controls and Energy Conservation for HVAC Equipment - Agenda

- 1. Introduction of DDC Controls Project
- 2. HVAC Control Principles
- 3. Communication Standards and Networks
- 4. Vendor Examples of DDC Software Programming and Operator Interfacing
- 5. Typical Rooftop and Central AHU HVAC Control Systems and Applications
- 6. System Maintenance and Service of DDC Controls
- 7. Avoiding Common Control Problems and Fixing the Problems
- 8. Calibrating and Verifying Energy Savings of the DDC Controls

Part 1 HVAC Control Principles

- 1. Intent of Battelle Pacific NW Division involvement
- 2. Purpose of Controls
- 3. Key Components of Control Systems
- 4. Control Loops, Open vs. Closed Loops
- 5. Terminology
- 6. The Control Cycle and Control Actions
- 7. The Energy Sources for Control Systems
- 8. DDC Point Types

Part 2 Control Applications, Networks, Programming, Maintenance, and Energy Savings

- 1. DDC Control Applications
- 2. DDC Networks and Architecture
- 3. Communication Standards and Networks
- 4. Vendor Examples of DDC Software Programming and Operator Interfacing
- 5. System maintenance and service of DDC controls
- 6. Using DDC controls to save energy

Section 1 Introduction of DDC Controls Project

 Purpose of this project is to provide HVAC educational materials to Washington State community colleges to educate students who have chosen or may chose career paths related to HVAC servicing and building energy management fields

Section 2 HVAC Control Principles The Purpose of Temperature Controls

 Control systems are the "brains" of HVAC equipment to maintain human comfort. Pictured below is an AHU that serves only one zone. This type of AHU is called a *single* zone AHU. In the example, a temperature sensor (stat) sends a signal to a control panel, which sends a signal to a valve.

Section 3 Key Components of a Control System Include:

Courtesy TAC Controls/Schneider Electric

PNWD-SA-8834

Sensors

Modern HVAC Sensors Include:

- Humidity and temperature transmitters
- CO₂ for indoor air quality (IAQ) utilizing demand control ventilation
- Power meters
- Branch circuit monitors
- Energy meters

1-9

Sensors

PNWD-SA-8834

- A sensor monitors and measures a variable. The HVAC variables are temperature, humidity, flow, and pressure. Different types of signals are produced by different types of sensors. They include:
 - Electric sensors
 - -Pneumatic sensors
 - -Electronic sensors

An example of a sensor is shown here. While it may appear to be a thermostat, it is a remote sensor with a remote setpoint dial. The controller is in another location.

Pneumatic Sensors/Transmitters

 Pneumatic controls sensors or transmitters sense the variable and produce a 3 psig to 15 psig (pound per square inch, gauge), [20 kPa (kiloPascals) -105 kPa] signal over a particular transmitter's <u>range.</u>

Courtesy Johnson Controls

Electronic Sensors Include:

- Resistance sensors are resistance temperature devices (RTDs), and are used in measuring temperature. Examples are Balco elements, copper platinum, 10K thermistors, and 30K thermistors.
- Voltage sensors could be used for temperature, humidity and pressure. Typical ranges are 0 to 5 Vdc (Volts direct current), 1 to 11 Vdc, and 0 to 10 Vdc.
- Current sensors could be used for temperature, humidity, and pressure. The typical current range is 4 to 20 mA (milliamps).

1000Ω (Ohms) Balco PTC Electronic Temperature Sensors

 The resistance outputs of a electronic Balco temperature sensor follow the diagrams below:

• When 1000 ohms is measured across the Balco element, the temperature is approximately 70°F (21°C). As the temperature increases, the resistance changes 2.2 ohms per 1°F (3.96 ohms per 1°C). In a Balco temperature sensor, as the temperature increases, the resistance increases proportionally in a positive direction. This is known as a positive temperature coefficient (PTC) sensor. However, many temperature sensors are considered thermistors, and perform as Negative temperature coefficients (NTC).

Comparison of Common Temp Sensors

Courtesy Omega Controls

Controllers Can Include:

Electric Controls

Pneumatic Controls

DDC Controls

Courtesy Johnson, Honeywell, and Alerton Controls

Controllers basic principles the controller receives the input And processes an output

Sensors

Input points

Analog (Variable) or Digital (2 State)

Controlled Devices

Output points

Analog (Variable) or Digital (2 State)

The Business of In

PNWD-SA-8834

Electronic Control System

Pneumatic Controller System

Courtesy Northwest Energy Efficiency Council

PNWD-SA-8834

The DDC controller receives the input from the sensor, performs a logic function, and processes an output

Courtesy DDC Online Org

Controller Action-Direct or Reverse Illustration

TEMPERATURE	BRANCH LINE PRESSURE	ACTION
🖝 (Fall)	🗢 (Fall)	Direct Acting
🛖 (Rise)	 (Rise)	Direct Acting
🖝 (Fall)	🛧 (Rise)	Reverse Acting
📤 (Rise)	🏶 (Fall)	Reverse Acting

Courtesy Honeywell Controls

Controller Direct Action-Illustration

Courtesy TAC Controls/Schneider Electric

Controller Direct Action-Illustration

 This relationship between the input to a controller (temperature) and its output (current) can be displayed on a graph as follows:

Courtesy TAC Controls/Schneider Electric

Controller Reverse Action-Illustration

Courtesy TAC Controls/Schneider Electric

Controller Reverse Action-Illustration

 This relationship can is displayed on a graph as follows:

Battelle The Brusiness of Innovation

Controlled Devices

Control Valves

- two-way Control Valves

Used with differential pressure (DP) sensors and VSD pump systems on primary and secondary loops

- three-way (mixing or diverting)
- Pressure independent control valves

Automatic dampers

Damper operators

VSDs: variable speed drives

Courtesy Belimo

The Present Control Systems

Use control valves that are:

Pressure independent control valves No Cv required, reduced pumping costs, higher efficiency, easy to balance.

Note: Pressure across the control surface (P1-P2) remains constant. Steady flow improves heat transfer, minimizes flow, and raises delta T.

Schematic of Pressure Independent Modulating Control Valve

Courtesy Flow Control Valves

Examples of 2-Way and 3-Way Control Valves

Northwest Energy Efficiency Council

ballelle

Dampers: Types, Actuators, and Characteristics

- Economizers on many central AHUs are custom ordered for the job specific requirements
- Economizers on packaged RTUs are normally ordered as an option with the package

- <u>Control Dampers Can Be Either:</u>

Economizer Damper Actuator Types are either:

Battelle The Business of Innovation

Economizer Damper Actuators

will have either direct connect actuators bolted directly to the damper or they will be installed with a shaft and linkage arrangement (more prone to fail)

Direct Connect Actuator Damper Connected to Actuator Via Shaft and Coupling **PNWD-SA-8834**

Parallel Blade Damper Characteristics

have poor linear control

Courtesy T.A. & Co.

Ratele

The Business of Innovation.

Opposed Damper Characteristics have better linear control

Figure 4 **Opposed Blade Damper Flow Characteristics** Installed flow characteristics at different damper authorities (1-100%) % Maximum Flow **Damper Position Degrees Open** 10V **Control Signal**

The Business of Innovation

Baiel

Courtesy T.A. & Co.

Damper Actuators can be Controlled by :

- Voltage (0-10Vdc or 2-10Vdc)
- Current (4-20mA)
- Floating point (binary pulse to open or close)
- PWM-pulse width modulated
- Resistance (0-135 ohms)

Example of analog control using 4-20mA or 2-10Vdc

Electronic Variable Frequency Drives (VSDs)

Vary frequency of motor to control speed
Often called VSDs, VFDs, or ASDs

The Business of In

DDC control systems have variable frequency drives (VFDs) as standard equipment on:

- Cooling towers
- AHU's and VAV fans
- Pumps
- Chillers

PNWD-SA-8834

Variable Speed Drives

Courtesy ABB Controls

Review of the Key Control Components Exercise-identify the sensors, controllers, and

controlled devices

Review of the Key Control Components Exercise-connect the sensor, controller, and

PNWD-SA-8834

controlled device in the proper order.

Review of Control Action

Exercise-the control drawing below has a direct acting controller, with a NO valve. Show the correct action with arrows at each component when used for cooling mode.

Courtesy TAC Controls/Schneider Electric and Belimo

Review of Control Action Exercise-Circle the correct answer.

A discharge air sensor modulates a normally open hot water valve. What action is needed for the controller? D.A. or R.A. Circle the correct answer. Discharge Air Sensor N.O. H¥H HWS

Review of Control Action Exercise-Circle the correct answer.

A return air humidity sensor modulates a normally closed chilled water valve for dehumidification. What action is needed for the controller?

Courtesy TAC Controls/Schneider Electric

Review of Control Action Exercise-Circle the correct answer.

The mixed air sensor modulates the normally closed outside air dampers and the normally open return air dampers to maintain a temperature of 55°F (13°C). What action is needed for the controller?

Courtesy TAC Controls/Schneider Electric

PNWD-SA-8834

Review of the Key Control Components

Exercise-Identify the parallel vs. opposed blade dampers and the 3-way mixing vs. diverting

1 STIC

The Business of Im

Section 4 Basic Control Loop Principles

Controllers can be either

"closed" or "open" Loop

-Closes loops provide feedback-good control

-Open loops have no feedback-poor control

Basic Closed-Loop-Example The sensor feeds back to the controller

Courtesy DDC Online Org

Open Loop Controls have no feedback to the controller

Courtesy DDC Online Org

PNWD-SA-8834

Closed vs. Open Loop Control Illustration

PNWD-SA-8834

Notice, averaging bulb is closed loop in supply air, but T-STAT between filter and coil is open loop.

1-48

l sance

The Bruinses of Innovation

Section 5 Control Terminology

Setpoint, offset, and control point Throttling range Span and range Authority Calibration Analog and digital Thermostat as sensor-controller

Setpoint

Setpoint is the desired condition of a variable that is to be maintained, such as temperature. In the example below, 75 degrees F. is the room temperature setpoint that the building occupant desires.

Courtesy TAC Controls/Schneider Electric

Control Point and Offset

 The Control point is the actual temperature being sensed. The control point (temperature) may not be on the setpoint, but instead may be above or below it. Simply stated, setpoint is what you want, while control point is what you get. Offset is the amount of difference between control point and setpoint in a proportional control system. In the example below, the offset is approximately 4°F.

Throttling Range

• System throttling range (STR) is the change in the measured variable (i.e., temperature) that causes the controlled device to travel from one end of its stroke to the other.

Courtesy TAC Controls/Schneider Electric

Section 6 The Control Cycle and Control Action

Two position
Floating action
Proportional action
PI

Control Cycle Graph

Two Position Control

Two Position control action chart (heating action shown)

Courtesy Northwest Energy Efficiency Council

Two Position Control Response

PNWD-SA-8834

Floating Action Control

Proportional Control Action

Proportional Control Action

Proportional with Integral Control (PI)

Proportional Plus Integral (PI) Control Action

Courtesy Northwest Energy Efficiency Council

PNWD-SA-8834

PID-Proportional Plus Integral & Derivative

Proportional Plus Integral Plus Derivative (PID) control action

Courtesy Northwest Energy Efficiency Council

Adaptive Control

Adaptive loop tuning provides:

- Accurate, continuous loop control
- •Faster tuning of loops for energy savings
- •Less wear on valves, actuators, fans, pumps, dampers,

The Bruiness of

1-61

Review of Control Cycles Exercise; study the drawings and identify the control loop types as either: 2-position, proportional, or PI Control

Review of Control Cycles Exercise; identify and circle the closed loop vs. the open loop controls.

Review of Control Cycles Exercise; review the drawing and identify setpoint, control point, TR, and offset.

Courtesy TAC Controls/Schneider Electric

Review of DDC Terminology Exercise; identify the missing terms

Section 7 Control Energy Sources

- A power supply or source of energy is needed to power the control system. Control systems use either a pneumatic or electric power supply.
- Pneumatic controls use a compressed gas as a source of energy, typically compressed air.
- Electric and electronic controls could be powered by a variety of electrical power supplies of either alternating current (AC) or direct current (DC).
- **DDC-Direct digital controls** are considered electronically powered via a network of controls.

Battelle The Business of Innovation

Comparing Advantages And Disadvantages of pneumatics and DDC controls

- Pneumatic control systems
 - Low maintenance, ease of testing
 - Hard to integrate into DDC systems
 - Requires air compressor station
- •DDC Direct digital control
 - High accuracy
 - Flexible, easy to access
 - Programmable
- •Energy management considerations
 - Easy to optimize, reduce kW peaks, schedule

Basic Pneumatic Control System The Air Station Components

Courtesy Honeywell Controls

Basic Pneumatic Control System

Conventional Pneumatic Control Systems

Requirements:

- Clean and dry air supply
- Pressure reducing valve
- Utilizes pneumatic controllers
- Pneumatic devices

Pneumatic Controls Include:

- Thermostats that can be either:
 - Room type
 - Dead band types
 - Dual pressure type
- Humidistats
- Receiver controllers
 - Combine 2 sensors into 1 receiver with reset
 setpoint options
 - Utilizes either one pipe or two pipes
 - Sensors

Battelle The Business of Innovation

1-72

Pneumatic Control of Heating Coil Control with Reset

Battelle The Brusiness of Innovation

Pneumatic Control System Accessories

Pneumatic relays:

- Reversing relay
- High/low pressure selector
- Air motion
- Signal repeating
- Minimum position
- EPs and PEs

Pneumatic Switch

PE-Pressure to Electric Switch

Basic Pneumatic Control System

Example of Pneumatic Controls

Courtesy LAMA Books

Basic Electric Control

Courtesy Honeywell Controls

Example of Electric Controls for Economizers

Battelle The Brasiness of Innovation

Simple Electronic Control System

Courtesy Honeywell Controls

Example of Electronic Control for Basic AHU Economizer Control

Courtesy Honeywell Controls

Example of Electronic Control for Economizers with Differential Enthalpy and CO₂ Demand Ventilation Control

Section 8-DDC Point Types Input and Output Point Types Chart

	Input	Output
	Two state information from the building into the DDC field panel	Two state information from DDC field panel to the building
Digital	Switches:	On/Off - fans, pumps, lights
	Differential press/proof	Open/Close, two position damper
	Smoke alarms	Control of two-speed motors
	Level alarm	Energize/de-energize valves for heat/cool changeovers
	High/low pressure alarm	
	Filter status	
Analog	Variable information from the building into the DDC control panel	Variable information from the DDC control panel out to the building
	Temperature-Room, duct, OSA	Modulate valves, dampers, actuators
	Humidities-Room, duct, OSA	Motor speed control – VSDs
	Pressure-Static, velocity, total	Modulate volume dampers
	Flow rates-Water and air systems	Adjust air pressure to pressure operated devices
	kWh power, volts, and amps	

DDC Control System Digital Input (DI) Illustration

DCV-PS = Direct Current Voltage - Power Supply COM = Common L1 = Line 1 L2 = Line 2 +V = Positive Voltage

Courtesy DDC Online Org.

DDC Control System Digital Input (DI) Illustration Flow Switch

Courtesy Honeywell Controls

DDC Control System Digital Output (DO) Illustration

DDC Control System Analog Input (AI) Illustration

Courtesy DDC Online Org.

1-86

DDC Control System Analog Input (AI) Illustration For Measuring Air Flow in FPM

Courtesy Dwyer Instruments.

DDC Control System Analog Output (AO) Illustration For controlling a pneumatic valve

Courtesy TAC Controls/Schneider Electric

Analog Output (AO) Damper Actuators are controlled by either a voltage (2-10 Vdc) or

current (4-20 mÅ) signal from the controller

Courtesy Belimo

Example of DDC AHU Control Application with Point Types Identified

Exercise Review of DDC Terminology

Study the drawing below and identify the numbered points as either: AI, DI, AO, or DO

Exercise Review of DDC Terminology

Identify the numbered points in the following diagram as either: AI, DI, AO, or DO

