

Using Wireless Solutions to Lower Costs in HVAC Performance

Michael R. Brambley, Ph.D. Energy and Environment Directorate Battelle Pacific Northwest Division Richland, Washington michael.brambley@pnl.gov

12th Annual IN-BUILDING WIRELESS SOLUTIONS CONFERENCE May 12-15, 2009

Why HVAC System Operating Efficiency is a Concern

- Systems run during unoccupied hours—nights, weekends, holidays
- Poor economizer operation
- >Outdoor-air ventilation during morning warm-up or cool-down
- Incorrect "optimal" start and stop of HVAC systems
- > Excessive equipment cycling
- Leaky valves
- Exhaust fans running continuously 24/7
- Faulty sensors
- > High supply-air static pressure—excess air flow to zones, cold drafts, noise from diffusers, increased energy use

> Higher energy consumption and costs than necessary

Example HVAC Applications of Wireless Technology

- Four example applications of wireless technology for improving and maintaining the efficiency of heating, ventilating and air-conditioning systems.
 - Whole-building energy-use monitoring and fault detection
 - In-building condition monitoring
 - Wireless control systems
 - Remote monitoring and diagnostic system for packaged air conditioners and heat pumps

Whole-Building Energy-Use Monitoring - Energy Expert

- Energy Expert is a commercially available energyconsumption tracking tool that uses a PNNL computational engine for tracking and detecting anomalies in wholebuilding and major system energy consumption
 - Automatically constructs reference models of whole-building & major system energy use
 - controls for weather
 - controls for daily & weekly occupancy differences (schedules)
 - controls for other independent variables
 - Detects by comparing <u>actual</u> to <u>expected</u> energy use
 - Measures energy savings and energy waste

Whole-Building Energy-Use Monitoring - Energy Expert

Graphic courtesy of NorthWrite, Inc.

Battelle

Whole-Building Energy-Use Monitoring - Energy Expert

Graphic courtesy of NorthWrite, Inc.

Whole-Building Energy-Use Monitoring

Three Typical Cases of Wireless Monitoring for Energy Expert

Case 1: Utility Provides Pulse Output

Battelle

Whole-Building Energy-Use Monitoring

Case 3: No Meter is Available (or Submetered Load)

Battelle

The Business of Innovation

Monitored Building

Graphic courtesy of NorthWrite, Inc.

In-Building Condition Monitoring

Battelle

In-Building Condition Monitoring Wireless Sensor Network Technology

- 900 MHz
- FHSS
- Range: 2500 ft.
- Battery life: 3 yr
- Sensor: RTD

- Line powered
- Range: 4 miles
- Up to 100 transmitters

- Greater occupant satisfaction – fewer space heaters
- Ability to diagnose hot and cold spots
- Operators
 implemented supply
 temperature reset

Wireless Control Systems

Ethernet

Diagram courtesy of Johnson Controls, Inc.

11

Smart Monitoring and Diagnostic System (SMDS) for Packaged Air Conditioners and Heat Pumps

Diagnostics Provided

Battelle

- Packaged HVAC Unit Air-Side Fault Detection and Diagnostics
- Packaged HVAC Unit Efficiency Monitor and Diagnostics
- Optional: Packaged Unit Refrigerant-Side Fault
 Detection and
 Diagnostics

SMDS Hardware

SMDS Circuit Board and Sensors

Thermistors

- outdoor air
- return air

Thermistors & humidity sensors

- mixed air
- supply air

Current switch

• supply fan status

Direct connections

- heating/cooling status
- damper signal

Voltage taps and ground

• direct connections

Current

SMDS Major Components

Temperature and Humidity Sensors Installation

Damper Position Signal Example

Diagnostic Algorithms

>Outdoor-Air Ventilation and Economizer Operation

- Algorithms from Outdoor-Air Economizer Diagnostician (OAE) module of the Whole-Building Diagnostician (WBD)
- Tested on many units with results published
- <u>http://www.buildingsystemsprogram.pnl.gov/fdd/wbd/index.stm</u> for details and list of publications
- > Efficiency Monitor/Diagnostician
 - Based on RTU power use and change in enthalpy of air across the cooling coil.
 - Rated air flow rate is used to calculate COP—looking for changes in cooling efficiency rather than accurate absolute value
- > Refrigerant-side Diagnostics
 - Based on troubleshooting rules from Carrier Corporation. 1992.
 General Training Air Conditioning II Module Troubleshooting.

Air-Side User Interface

	LIIDX			
ne Period:	Yesterday	y 💌		
BB9		2		
0 & 7	20, 2) J		
ා වා 🖓 😭 Site	🗾 🗔 🧟 Na	me	Status	

Overview	EffDx A	AirDx
Time Period:	Today	*

88	a 🔽 🗖 🕏					
Site	Name	OK #	Configuration Issue	Ventilation Issue	Energy Issue	Control, Sensor or Other Problem
WmDx	WmDx 2002477	3	0	0	16	0

Air-Side User Interface – Graphic Hourly Results

Battelle

Efficiency Monitoring/Diagnostics User Interface

Overview	EffDx AirDx						
ne Period:	Today 💌						
Site	Name	Eff #	Eff Min	Eff Max	Eff Avg	Sensor Faults	

Efficiency Monitoring/Diagnostics User Interface

Battelle

SMDS Potential Benefits

- Enable RTU maintenance based on actual operating condition of units (condition-based maintenance) rather than periodic preventive maintenance only or neglect.
- > Enable rapid response to urgent service needs.
- Target technician time on units that need it most during a service call.
- Inform owners and service providers on degradation in unit efficiency to inform service decisions.
- > Energy and cost savings to owners.
- > More satisfied building occupants.
- > Higher-level service offering for HVAC contractors.

SMDS Status

- Field testing on approximately 150 rooftop air conditioners and heat pumps in Washington State.
- Six HVAC contractors participating—east and west sides of Cascades.

Collecting data for:

- Time required for installation
- Diagnostic performance
- User perceptions

- Service actions taken
- Energy impacts
- Impressions of users
- Installations in Fall 2008 and Spring 2009.
- Project completion in Fall 2010.
- Exploring development of lower-cost SMDS.

Thank you!

BUSINESS SENSITIVE

25