

Proudly Operated by Battelle Since 1965

Large Commercial Buildings: Re-tuning for Efficiency

Terminal Units in Air Distribution System: Pre-Re-Tuning and Re-Tuning

PNNL-SA-85063 1/11/2012 Version 1.1

Zone Conditioning

Zone set points

- Be aware that zone set points drive the system and have a ripple effect all the way to the meter
 - If the zone set points are too low, you can drive the system into cooling mode with excessive reheat
 - If the zone set point is too warm, you will waste energy for heating and use more outside-air makeup due to air handlers using more air
 - One zone can drive multiple zones around it
- Use occupied modes in variable air volume (VAV) controllers
- Install discharge-air temperature sensors on units with reheat whenever possible

Importance of Terminal Units Re-tuning

- Terminal boxes are major building HVAC components and directly impact comfort and energy costs
- Terminal boxes control may cause occupant discomfort and waste energy, if they have inappropriate operation and control
- Improper minimum air flow setting and control may result in significant simultaneous heating and cooling, extra fan power consumption and higher energy consumption in the summer

General Benefits from Re-tuning Zone Terminal Boxes

Proudly Operated by Battelle Since 1965

- Reduce fan power consumption
- Minimize simultaneous heating/cooling
- Reduce occupant complaints & improve thermal comfort
- Reduce deferred maintenance

Classification of Terminal Units

Proudly Operated by Battelle Since 1965

Unit operation

- Primary air only / induction unit / fan powered
- Primary air inlet
 - Single duct / dual duct
- Supply air flow
 - Constant air volume / variable air volume
- Control scheme
 - Pressure dependent / pressure independent
- Reheat option
 - With reheat / without reheat
- Fan powered unit
 - Series (constant volume) / parallel (variable volume)
- Related controllers & actuators
 - Pneumatic/electric/direct digital controls

Commonly Used Terminal Units

- Single duct variable air volume (SDVAV) terminal box
 - With reheat (hot water reheat/electrical reheat; typically used in perimeter zones)
 - Without reheat (typically used in interior zones)
- Fan powered unit
 - Parallel type
 - Series type
- Dual duct terminal box
 - Dual duct constant air volume (DDCAV)
 - Dual duct variable air volume (DDVAV)
- Induction units (2 pipe/4 pipe)

Analyze Zone Heating and Cooling Demands

Purpose

- Get a feel for how many zones on each monitored air handler are heating and how many are cooling at the same time
- Get a sense of which areas are heating and which are cooling at any given time
- Determine if any individual zones are heating and cooling at the same time
- Others?

Analyze Zone Heating and Cooling Demands

Approach

- For each air-handler, count the number of zones served that are in heating mode and that are in cooling mode under various conditions (e.g., time of day and approximate outdoor air temperature). Use a plot of number of zones in each mode and the outdoor temperature vs. time
- Note which areas of the building (e.g., interior core vs. perimeter zones or zones facing certain directions) are in heating and cooling
- Look for any monitored zones that are using both heating and cooling over relatively short time periods or cycling between heating and cooling

Analyze Zone Heating and Cooling Demands

Proudly Operated by Battelle Since 1965

- Potential issues to identify
 - Supply-air temperature too cool or too warm
 - No use of supply-air reset
 - Certain zones (e.g., corner offices) driving air-handler operation
 - Some zones out of control, oscillating between heating and cooling

Pre-Re-Tuning Phase: Trend-Data Collection and Analysis of Terminal Boxes

- Collect all minimum air flow and maximum air flow settings for pressure independent terminal boxes using the building automation system (BAS) reporting function
 - Purpose is to identify potential of reducing the minimum air flow setting
- Collect all terminal box damper positions and reheat valve positions using BAS
 - Purpose is to identify simultaneous heating and cooling

Selection of Zones for Trending

- Zones with comfort complaints
- Interior zones with low/light cooling load (janitor's room or office storage as examples)
- Zones with high minimum air flow setting (>35% for example)
- Exterior zones with reheat during cooling season
- Office that is no longer fully occupied as originally designed
- Refer to the zone/VAV box monitoring plan/table

Parameters to Trend

- Trend as many points as possible from the following list
 - Discharge-air temperature from AHU
 - Discharge-air temperature after the reheat coil, if possible (if not available, reheat valve position as alternative)
 - Zone air temperature
 - VAV damper position
 - Zone occupancy mode
 - Electrical heater stage or on/off status
 - Outdoor-air temperature is also needed (from BAS)

Zone Data Analysis

Key conditions to look for while analyzing the charts:

- No night time set back
- Significant reheat for interior zone terminal box during the occupied hours
- Overcooling or overheating
- Significant reheat during summer/cooling season for exterior zone box
- Discharge-air temperature too cool or too warm
- No use of discharge-air reset
- Certain zones (e.g., corner offices) driving air-handler operation
- Some zones out of control, oscillating between heating and cooling

Zone Data Analysis: Unoccupied Mode/Night Set back

- Unoccupied mode, no night time set back for terminal box
 - Determine whether the unoccupied hour is not defined or the time schedule is not enabled
- Approach:
 - Review the plots of zone occupancy command, heating valve or damper position vs. time
 - Look for the valve and/or damper position at unoccupied hour

Zone Data Analysis: Unoccupied Mode/Night Set back

- No non-occupancy mode
- Reheat valve modulation at night

- There is non-occupancy mode
- Reheat valve off at night

Example of Bad Operation

Example of Good Operation

Zone Data Analysis: No Night Time Set Back?

Proudly Operated by Battelle Since 1965

Zone Data Analysis: Fan Powered Box

Proudly Operated by Battelle Since 1965

Re-tuning Recommendations for Unoccupied and Night Set back

- Enable unoccupied mode and night set back control
- Develop a schedule for each zone
 - Turning OFF systems too early in the evening or turning them ON too late in the morning may cause comfort problems
- Make sure the unoccupied mode is enabled

Reheat for Interior Zone VAV Box

- Minimum air flow setting is too high, leading to excessive reheat
 - Determine whether the heating valve is open during occupied hours during summer time
 - Review the plots of heating valve vs. time (and outdoor-air temperature)

Reheat for Interior Zone VAV Box Example

Significant reheat for interior zone terminal
box with high minimum air flow setting

No reheat for interior zone terminal box: the minimum air flow setting has been retuned

Example of Bad Operation

Example of Good Operation

Re-tuning Recommendations for Interior Terminal Box Minimum Air flow Setting

- Reduce interior zone terminal box minimal air flow setting
- Disable heating for interior zones in summer (OAT > 70°F, for example) to eliminate the heating leakage
 - It can be accomplished by the terminal box control programming or building heating system control

Zone Data Analysis: Overcooling

- Case 1: The minimum air flow setting is too high
 - Terminal box damper is forced to open to meet the minimum air flow requirement, although the room temperature set point is satisfied
- Case 2: Terminal box flow station is out of calibration
 - The actual flow is much more than the measured flow

Zone Data Analysis: Overcooling Example

Starving terminal box for a conference room (space temperature set point is 75°F and no reheat coil

Simultaneous Heating and Cooling for Exterior Zone Terminal Boxes

- Issue: There is significant reheat for exterior zone terminal box during summer
- Purpose:
 - Determine whether the minimum air flow setting is too high
- Approach:
 - Review the plots of outdoor-air temperature and heating valve vs. time
 - Look for the heating valve position when outdoor-air temperature is higher than 65°F

Example of Simultaneous Heating and Cooling for Exterior Zone Terminal Boxes

OAT>72°F, reheat is still on

• OAT>72°F, reheat is off

Example of Bad Operation

Example of Good Operation

Re-Tuning Recommendations for Exterior Zone

Reduce the exterior zone terminal box minimum air flow setting based on the ventilation requirements and external wall exposure

Zone Data Analysis: Reheat Valve Leakage

- Issue: overheated space, cooling set point cannot be maintained
- Purpose: determine if the reheating value is leaking
- Approach:
 - Review plots of air-handling discharge-air temperature (ADAT), zone discharge-air temperature (ZDAT) and zone temperature vs. time
 - Look for temperature difference between ADAT and ZDAT
 - If there is no trended data available for ZDAT, a spot measurement at diffuser is recommended

Zone Heating and Cooling Demands: Example of Good Operations

Plot of VAV unit dampers vs. time for all VAV units served by an air handler – Very Good Distribution – Most 50% to 75% open

Zone Heating and Cooling Demands: Example of Marginal Operation

Plot of VAV unit dampers vs. time for all VAV units served by an air handler – **Distribution Marginally OK**

Zone Heating and Cooling Demands: Example of Bad Operation

Proudly Operated by Battelle Since 1965

Plot of VAV unit dampers vs. time for all VAV units served by an air handler – **Bad Distribution – Too many near fully open**

Zone Heating and Cooling Demands: Example of Bad Operation

Plot of VAV unit dampers vs. time for all VAV units served by an air handler – **Bad Distribution – Too many near fully closed**

Zone: Another Example of Good Operation

Proudly Operated by Battelle Since 1965

Zone: Another Example of Bad Operation

Proudly Operated by Battelle Since 1965

Bad distribution (less than 60% most of time)

Fan Powered Box (FPB) Trend Data Collection and Analysis

- Selecting zones for trending
 - Best approach: trend all zones operation if possible
 - If there's bandwidth constraints of data trending, you may select
 - Zones that are exposed to different orientation and zones that serve different needs or
 - Zones with thermal comfort issues
 - Zones with operation and maintenance issues
- Refer to the zone/VAV box monitoring plan

Series and Parallel FPB

- Series type (constant volume)
- Fan in series with primary air, runs continuously
- Parallel type (variable volume)
- Fan in parallel with primary air, runs only when needed

Source: Figures from Titus

FPB Parameters to Trend

Trend as many of the following parameters as possible

- Air-handling discharge-air temperature (ASAT)
- Zone discharge-air temperature (ZDAT) after the FPB
- Zone-air temperature and set point
- Terminal fan motor (in FPB) on/off status
- Damper position
- Zone occupancy mode

FPB Data Analysis

Key conditions to look for in the charts generated by the spreadsheet

- Is the FPB fan ON at unoccupied hour
- Significant mixing of return and primary air during summer/cooling season
- Simultaneous heating and cooling

Possible Reasons for 24/7 FPB Fan Operation

- Issue: Unoccupied hour set back is not defined or enabled
- Purpose:
 - Determine whether the FPB fans follow the same schedule as the AHU provides the primary air
 - Determine whether the FPB fans are operated during unoccupied hours
 - Approach:
 - Review plots of FPB fan status vs. time
 - Look for the fan status at unoccupied hour and determine the FPB operation schedule

Possible Reasons for Significant Reheat for Interior Zone

- Issue: There is significant reheat or mixing for interior zone FPB
- Purpose:
 - Determine whether the minimum air flow setting (primary air) is too high

Approach:

- Review the plots of air-handling unit discharge-air temperature (ASAT) and discharge-air temperature (ZDAT) after mixing/reheat vs. time
- Look for the temperature difference between and after mixing

Re-Tuning Recommendations for FPB

- Define and enable the unoccupied set back control if possible
- Interlock the terminal fan with the AHU control
- Reduce the box primary minimum air flow setting based on ventilation requirements
 - Make sure at least 75 cfm/person for example

Re-Tuning Recommendations for FPB (continued)

- For multi-speed terminal fan
 - Switch fan to low speed during summer/cooling season
 - Operate terminal fan at low speed for interior zone FPB all the time
- For constant speed terminal fan
 - Shut off terminal fan during summer/cooling season to save the fan power when there is no need for heating or recirculation
 - Close heating coil valve during summer/cooling season to minimize simultaneous heating and cooling

Re-tuning FPB Boxes Benefits: Example

Minimize simultaneous heating/cooling during summer

- Reduce fan power (for FPB) consumption during summer and unoccupied hours
- Improve thermal comfort, for some facilities
- Reduce the noise level significantly by shutting off the terminal fan when it is not needed

Proudly Operated by Battelle Since 1965

QUESTIONS? www.pnnl.gov/buildingretuning